Jump to content

General Information/IS and Gene Expression

From TnPedia

IS impact on their bacterial hosts

Another important aspect of IS impact on their bacterial hosts is their ability to modulate gene expression. In addition to acting as vectors for gene transmission from one replicon to another in the form composite transposons (two IS flanking any gene; Fig.2.3) and tIS (Fig.8.1) and their ability to interrupt genes, it has been known for some time[1][2] that IS can also activate gene expression. This capacity has recently received much attention due to the increase in resistance to various antibacterials[3][4][5], a worrying public health threat[6][7].

They can accomplish this in two ways: either by providing internal promoters whose transcripts escape into neighboring DNA[2][8][9][10] or by hybrid promoter formation. Many IS carry -35 promoter components oriented towards the flanking DNA (Fig.18.1). In a number of cases this plays an important part in their transposition since a significant number of IS transposes using an excised transposon circle (Fig.18.1) with abutted left and right ends. For these IS, the other end carries a -10 element oriented inwards towards the Tpase gene.

Together with the -35, this generates a strong promoter on formation of the circle junction to drive Tpase expression required for catalysis of integration (Fig.18.2) [11][12][13][14]. Thus, if integration occurs next to a resident -10 sequence, the IS -35 sequence can contribute to a hybrid promoter to drive expression of neighboring genes [see [15]]. At present, this phenomenon had been reported to occur with over 30 different IS in more than 17 bacterial species[16][17] (Table IS and Gene Expression below). Indeed, specific vector plasmids have been designed to identify activating insertions (e.g. [18]).

Fig.18.1. Copy out, paste in (DDE). Left column. Illustrates the copy out paste in the transposition mechanism. The transposon is represented as a yellow line. Flanking sequences in the donor molecule are blue. Flanking sequences in the target molecule are green. Red circles indicate 3′OH moieties generated by Tpase-catalyzed hydrolysis at the transposon end(s). Red boxes indicate target DNA flanks that are duplicated on insertion. Top to bottom: Tpase catalyzed cleavage at the 3′ transposon ends using H2O as the nucleophile. Liberated 3′OH attack the opposite end to create a bridged molecule which then undergoes replication (dotted line) to generate a circular transponso copy and regenerate the donor molecule. The circle intermediate undergoes cleavage to generate two 3'OH ends which attack the target DNA in a staggered way, resulting in integration. Repair at each end then generates the direct target repeat characteristic of many transposons. Right column. Formation of hybrid promoters by copy out -paste in transposition. The left and right terminal inverted repeats of the IS, IRL ,and IRR, are shown as a square and pointed box respectively. The component –10 and –35 promoter elements of pjunc within these ends are also shown, together with the weak pIRL promoter and the direction of transcription of the transposase. In a first step, single-strand cleavage and transfer from one IR to the other is catalyzed by OrfAB produced from the weak pIRL promoter. This is indicated at the top of the figure by the curved arrow. In this case, the right end (IRR) is shown attacking the left end (IRL). The resulting figure-eight form is drawn below and shows the free 3’OH group generated on the flanking donor DNA sequence. In a second step, second-strand circularization occurs by an as yet undetermined mechanism involving host functions but independently of transposon proteins [Turlan et al., 2000]. The resulting IRR-IRL junction carries suitably placed -35 and –10 hexamers, separated by a canonical 17 bp spacer and form a strong pjunc (bold arrow) promoter able to promote high levels of production of IS911 proteins. Integration of the circle results in disassembly of the promoter restoring low levels of expression from pIRL. Insertion upstream of a resident -10 promoter element can bring the IR-associated -35 element at the correct distance to form a promoter and activate a downstream gene.

IS activity can affect efflux mechanisms resulting in increased resistance: IS1 or IS10 insertion can up-regulate the AcrAB-TolC pump in Salmonella enterica[19]; IS1 or IS2 insertion upstream of AcrEF[20][21] and IS186 insertional inactivation of the AcrAB repressor, AcrR, in Escherichia coli [20], all lead to increased resistance to fluoroquinolones. Insertional inactivation of specific porins can also play a significant role[22].

Fig.18.2. Promoter Activities of junction fragments from different IS circles. Results of measurements of activities of 9 IS circle junctions when placed upstream of a beta-galactosidase gene.

IS and Gene Expression

Table. IS and gene expression.
IS family IS name Mechanism Gene(s) affected Organism Reference Clinical/Experimental
IS1 IS1 Cointegrate EmR Escherichia coli [23] C?
Copy-paste circles blaTEM-1 [15] E
acrEF pump Salmonella enterica [19] E
IS3 IS2 Copy-paste circles gal Escherichia coli [24][25] E
gal [23][2] E
argE [26][20] E
EmR C?
blaampC E
acrEF pump E
IS3 Copy-paste circles argE Escherichia coli [2] E
argE [8] E
citT [27] E
IS981 Copy-paste circles ldhB Lactococcus lactis [28] E
IS6110 Copy-paste circles Rv2280 and PE-PGRS gene, Rv1468c Mycobacterium tuberculosis [29] E
ISKpn8 Copy-paste circles blaKCP-2 Escherichia coli, Citrobacter freundii, Enterobacter cloacae, Enterobacter aerogenes, and Klebsiella oxytoca [30] C
IS4 IS10 Cut-paste (hairpin) his Salmonella typhimurium [31] E
Cut-paste Escherichia coli [32] E
Cut-paste acrEF pump Salmonella enterica [19] E
IS50 Cut-paste (hairpin) aph3’II Escherichia coli [33] E
IS1999 blaVEB-1 Pseudomonas aeruginosa [4] C
blaVEB-1/blaOXA-48 Escherichia coli [3] C
ISPa12 blaPER-1 Salmonella enterica, Pseudomonas aeruginosa, Providencia stuartii, Acinetobacter baumannii [34] C
ISAba1 blaampC Acinetobacter baumannii [35][36][37] C
blaOXA-51/blaOXA-23 [38] C
IS5 IS5 EmR Escherichia coli [23] C?
ISFtu2 general Francisella tularensis [39] Natural isolate
ISVa1 (iron uptake) Vibrio anguilarum [40] Natural isolate
IS1168 nimA, nimB Bacteroides sp. [41] C
IS1186 cfiA Bacteroides fragilis [42][43] C
IS402 bla Pseudomonas cepacia [44] E
IS6 IS257 Cointegrate dfrA Staphylococcus aureus [45] C
IS257 Cointegrate tet Staphylococcus aureus [46]
IS1008 blaOXA-58 Acinetobacter baumannii [47]
IS26 aphA7, blaS2A Klebsiella pneumoniae [48]
blaSHV-2a Pseudomonas aeruginosa [49]
IS140 aac(3)-III and -IV [50]
IS21 ISBf1 Copy-paste circle cepA Bacteroides fragilis [51] C
ISKpn7 blaKPC Klebsiellea pneumonia [52]
IS30 IS30 Copy-paste circle galK Escherichia coli [53] E
IS18 aac(6’)-Ij Acinetobacter sp. [54] C
blaOXA257 [55]
IS4351 ermF Bacteroides fragilis [56] C
cfiA [5]
IS1086 cnrCBAT (ZnR) Cupriavidus metallidurans E
IS256 IS256 Copy-paste circles mecA Staphylococcus sciuri [57][58]
llm Staphylococcus aureus
IS1490 Burkholderia cepacia [59]
IS406 Burkholderia cepacia [44] E
IS481 IS481 Copy-paste circles katA Bordetella pertussis [60]
ISRme5 cnrCBAT (Zn R) Cupriavidus metallidurans [61] E
IS630 ISFtu1 Tc-like general Francisella tularensis [39] Natural isolate
IS982 IS1187 cfiA Bacteroides fragilis [42] E+C
[5][62][63] C
IS982 citQRP Lactococcus lactis [64]
IS1380 ISBf12 cfiA Bacteroides fragilis [5] C
IS612 [63]
IS613 [63]
IS614 [5][63][65]
IS1188 [62]
IS942 [62]
ISEcp1 blaCTX-M-15 Enterobacteriaceae [66]
blaCTX-M-17 Klebsiella pneumoniae [67]
blaCTX-M-19 Klebsiella pneumoniae [34]
blaCTX-M Kluyvera ascorbata [68]
rmtC Escherichia coli [69]
IS1187 cfiA Bacteroides fragilis [62]
ISL3 ISSg1 Copy-paste circles sspB (surface antigen) Streptococcus gordonii [70]
IS1411 pheBA Pseudomonas putida [71]
ISAs1 IS1548 lmb (lamelin binding) Streptococcus agalactiae [72]
nd Acinetobacter baumannii [35] C
ISNYC IS403 bla Burkholderia cepacia [44] E
IS404
IS405

Bibliography

  1. Reif & Saedler. IS1 is involved in deletion formation in the gal region of E. coli K12. Molecular & general genetics : MGG. 1975. 137. pp. 17-28. doi: 10.1007/BF00332538. PMID: 1101028.
  2. 2.0 2.1 2.2 2.3 Glansdorff et al.. Activation of gene expression by IS2 and IS3. Cold Spring Harbor symposia on quantitative biology. 1981. 45 Pt 1. pp. 153-6. doi: 10.1101/sqb.1981.045.01.024. PMID: 6271458.
  3. 3.0 3.1 Aubert et al.. Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of beta-lactam resistance genes. Journal of bacteriology. 2006. 188. pp. 6506-14. doi: 10.1128/JB.00375-06. PMID: 16952941.
  4. 4.0 4.1 Aubert et al.. IS1999 increases expression of the extended-spectrum beta-lactamase VEB-1 in Pseudomonas aeruginosa. Journal of bacteriology. 2003. 185. pp. 5314-9. doi: 10.1128/JB.185.17.5314-5319.2003. PMID: 12923109.
  5. 5.0 5.1 5.2 5.3 5.4 Sóki et al.. Molecular analysis of the carbapenem and metronidazole resistance mechanisms of Bacteroides strains reported in a Europe-wide antibiotic resistance survey. International journal of antimicrobial agents. 2013. 41. pp. 122-5. doi: 10.1016/j.ijantimicag.2012.10.001. PMID: 23158541.
  6. McKenna. Antibiotic resistance: the last resort. Nature. 2013. 499. pp. 394-6. doi: 10.1038/499394a. PMID: 23887414.
  7. Mole. MRSA: Farming up trouble. Nature. 2013. 499. pp. 398-400. doi: 10.1038/499398a. PMID: 23887415.
  8. 8.0 8.1 Charlier et al.. IS3 can function as a mobile promoter in E. coli. Nucleic acids research. 1982. 10. pp. 5935-48. doi: 10.1093/nar/10.19.5935. PMID: 6292860.
  9. Zafarullah et al.. Insertion of IS3 can "turn-on" a silent gene in Escherichia coli. Journal of bacteriology. 1981. 146. pp. 415-7. doi: 10.1128/jb.146.1.415-417.1981. PMID: 6260746.
  10. Simons et al.. Three promoters near the termini of IS10: pIN, pOUT, and pIII. Cell. 1983. 34. pp. 673-82. doi: 10.1016/0092-8674(83)90400-2. PMID: 6311437.
  11. Chandler et al.. Copy-out-Paste-in Transposition of IS911: A Major Transposition Pathway. Microbiology spectrum. 2015. 3. doi: 10.1128/microbiolspec.MDNA3-0031-2014. PMID: 26350305.
  12. Ton-Hoang et al.. Assembly of a strong promoter following IS911 circularization and the role of circles in transposition. The EMBO journal. 1997. 16. pp. 3357-71. doi: 10.1093/emboj/16.11.3357. PMID: 9214651.
  13. Perkins-Balding et al.. Excision of IS492 requires flanking target sequences and results in circle formation in Pseudoalteromonas atlantica. Journal of bacteriology. 1999. 181. pp. 4937-48. doi: 10.1128/JB.181.16.4937-4948.1999. PMID: 10438765.
  14. Duval-Valentin et al.. Transient promoter formation: a new feedback mechanism for regulation of IS911 transposition. The EMBO journal. 2001. 20. pp. 5802-11. doi: 10.1093/emboj/20.20.5802. PMID: 11598022.
  15. 15.0 15.1 Prentki et al.. Functional promoters created by the insertion of transposable element IS1. Journal of molecular biology. 1986. 191. pp. 383-93. doi: 10.1016/0022-2836(86)90134-8. PMID: 3029382.
  16. Depardieu et al.. Modes and modulations of antibiotic resistance gene expression. Clinical microbiology reviews. 2007. 20. pp. 79-114. doi: 10.1128/CMR.00015-06. PMID: 17223624.
  17. Siguier et al.. Bacterial insertion sequences: their genomic impact and diversity. FEMS microbiology reviews. 2014. 38. pp. 865-91. doi: 10.1111/1574-6976.12067. PMID: 24499397.
  18. Szeverényi et al.. Vector for IS element entrapment and functional characterization based on turning on expression of distal promoterless genes. Gene. 1996. 174. pp. 103-10. doi: 10.1016/0378-1119(96)00407-6. PMID: 8863735.
  19. 19.0 19.1 19.2 Olliver et al.. Overexpression of the multidrug efflux operon acrEF by insertional activation with IS1 or IS10 elements in Salmonella enterica serovar typhimurium DT204 acrB mutants selected with fluoroquinolones. Antimicrobial agents and chemotherapy. 2005. 49. pp. 289-301. doi: 10.1128/AAC.49.1.289-301.2005. PMID: 15616308.
  20. 20.0 20.1 20.2 Jellen-Ritter & Kern. Enhanced expression of the multidrug efflux pumps AcrAB and AcrEF associated with insertion element transposition in Escherichia coli mutants Selected with a fluoroquinolone. Antimicrobial agents and chemotherapy. 2001. 45. pp. 1467-72. doi: 10.1128/AAC.45.5.1467-1472.2001. PMID: 11302812.
  21. Kobayashi et al.. Suppression of hypersensitivity of Escherichia coli acrB mutant to organic solvents by integrational activation of the acrEF operon with the IS1 or IS2 element. Journal of bacteriology. 2001. 183. pp. 2646-53. doi: 10.1128/JB.183.8.2646-2653.2001. PMID: 11274125.
  22. Wolter et al.. Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS microbiology letters. 2004. 236. pp. 137-43. doi: 10.1016/j.femsle.2004.05.039. PMID: 15212803.
  23. 23.0 23.1 23.2 Barany et al.. Staphylococcal plasmids that replicate and express erythromycin resistance in both Streptococcus pneumoniae and Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 1982. 79. pp. 2991-5. doi: 10.1073/pnas.79.9.2991. PMID: 6283551.
  24. Saedler et al.. IS2, a genetic element for turn-off and turn-on of gene activity in E. coli. Molecular & general genetics : MGG. 1974. 132. pp. 265-89. doi: 10.1007/BF00268569. PMID: 4610339.
  25. Nevers & Saedler. Transposable genetic elements as agents of gene instability and chromosomal rearrangements. Nature. 1977. 268. pp. 109-15. doi: 10.1038/268109a0. PMID: 339095.
  26. Jaurin & Normark. Insertion of IS2 creates a novel ampC promoter in Escherichia coli. Cell. 1983. 32. pp. 809-16. doi: 10.1016/0092-8674(83)90067-3. PMID: 6187472.
  27. Blount et al.. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature. 2012. 489. pp. 513-8. doi: 10.1038/nature11514. PMID: 22992527.
  28. Bongers et al.. IS981-mediated adaptive evolution recovers lactate production by ldhB transcription activation in a lactate dehydrogenase-deficient strain of Lactococcus lactis. Journal of bacteriology. 2003. 185. pp. 4499-507. doi: 10.1128/JB.185.15.4499-4507.2003. PMID: 12867459.
  29. Safi et al.. IS6110 functions as a mobile, monocyte-activated promoter in Mycobacterium tuberculosis. Molecular microbiology. 2004. 52. pp. 999-1012. doi: 10.1111/j.1365-2958.2004.04037.x. PMID: 15130120.
  30. Luo et al.. Characterization of KPC-2-producing Escherichia coli, Citrobacter freundii, Enterobacter cloacae, Enterobacter aerogenes, and Klebsiella oxytoca isolates from a Chinese Hospital. Microbial drug resistance (Larchmont, N.Y.). 2014. 20. pp. 264-9. doi: 10.1089/mdr.2013.0150. PMID: 24433026.
  31. Ciampi et al.. Transposon Tn10 provides a promoter for transcription of adjacent sequences. Proceedings of the National Academy of Sciences of the United States of America. 1982. 79. pp. 5016-20. doi: 10.1073/pnas.79.16.5016. PMID: 6289329.
  32. Simons et al.. Three promoters near the termini of IS10: pIN, pOUT, and pIII. Cell. 1983. 34. pp. 673-82. doi: 10.1016/0092-8674(83)90400-2. PMID: 6311437.
  33. Rothstein & Reznikoff. The functional differences in the inverted repeats of Tn5 are caused by a single base pair nonhomology. Cell. 1981. 23. pp. 191-9. doi: 10.1016/0092-8674(81)90284-1. PMID: 6260374.
  34. 34.0 34.1 Poirel et al.. Insertion sequence ISEcp1B is involved in expression and mobilization of a bla(CTX-M) beta-lactamase gene. Antimicrobial agents and chemotherapy. 2003. 47. pp. 2938-45. doi: 10.1128/AAC.47.9.2938-2945.2003. PMID: 12936998.
  35. 35.0 35.1 Corvec et al.. AmpC cephalosporinase hyperproduction in Acinetobacter baumannii clinical strains. The Journal of antimicrobial chemotherapy. 2003. 52. pp. 629-35. doi: 10.1093/jac/dkg407. PMID: 12951337.
  36. Segal et al.. Genetic environment and transcription of ampC in an Acinetobacter baumannii clinical isolate. Antimicrobial agents and chemotherapy. 2004. 48. pp. 612-4. doi: 10.1128/AAC.48.2.612-614.2004. PMID: 14742218.
  37. Héritier et al.. Cephalosporinase over-expression resulting from insertion of ISAba1 in Acinetobacter baumannii. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2006. 12. pp. 123-30. doi: 10.1111/j.1469-0691.2005.01320.x. PMID: 16441449.
  38. Turton et al.. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS microbiology letters. 2006. 258. pp. 72-7. doi: 10.1111/j.1574-6968.2006.00195.x. PMID: 16630258.
  39. 39.0 39.1 Carlson et al.. Global transcriptional response to spermine, a component of the intramacrophage environment, reveals regulation of Francisella gene expression through insertion sequence elements. Journal of bacteriology. 2009. 191. pp. 6855-64. doi: 10.1128/JB.00995-09. PMID: 19749055.
  40. Tolmasky & Crosa. Iron transport genes of the pJM1-mediated iron uptake system of Vibrio anguillarum are included in a transposonlike structure. Plasmid. 1995. 33. pp. 180-90. doi: 10.1006/plas.1995.1019. PMID: 7568465.
  41. Haggoud et al.. Nucleotide sequence analysis of two 5-nitroimidazole resistance determinants from Bacteroides strains and of a new insertion sequence upstream of the two genes. Antimicrobial agents and chemotherapy. 1994. 38. pp. 1047-51. doi: 10.1128/AAC.38.5.1047. PMID: 8067736.
  42. 42.0 42.1 Podglajen et al.. Insertion of a novel DNA sequence, 1S1186, upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis. Molecular microbiology. 1994. 12. pp. 105-14. doi: 10.1111/j.1365-2958.1994.tb00999.x. PMID: 8057831.
  43. Podglajen et al.. Genotypic identification of two groups within the species Bacteroides fragilis by ribotyping and by analysis of PCR-generated fragment patterns and insertion sequence content. Journal of bacteriology. 1995. 177. pp. 5270-5. doi: 10.1128/jb.177.18.5270-5275.1995. PMID: 7545155.
  44. 44.0 44.1 44.2 Scordilis et al.. Identification of transposable elements which activate gene expression in Pseudomonas cepacia. Journal of bacteriology. 1987. 169. pp. 8-13. doi: 10.1128/jb.169.1.8-13.1987. PMID: 3025189.
  45. Leelaporn et al.. Possible role of insertion sequence IS257 in dissemination and expression of high- and low-level trimethoprim resistance in staphylococci. Antimicrobial agents and chemotherapy. 1994. 38. pp. 2238-44. doi: 10.1128/AAC.38.10.2238. PMID: 7840551.
  46. Simpson et al.. An IS257-derived hybrid promoter directs transcription of a tetA(K) tetracycline resistance gene in the Staphylococcus aureus chromosomal mec region. Journal of bacteriology. 2000. 182. pp. 3345-52. doi: 10.1128/JB.182.12.3345-3352.2000. PMID: 10852863.
  47. Chen et al.. Acquisition of a plasmid-borne blaOXA-58 gene with an upstream IS1008 insertion conferring a high level of carbapenem resistance to Acinetobacter baumannii. Antimicrobial agents and chemotherapy. 2008. 52. pp. 2573-80. doi: 10.1128/AAC.00393-08. PMID: 18443121.
  48. Lee et al.. Direct involvement of IS26 in an antibiotic resistance operon. Journal of bacteriology. 1990. 172. pp. 3229-36. doi: 10.1128/jb.172.6.3229-3236.1990. PMID: 2160941.
  49. Naas et al.. An SHV-derived extended-spectrum beta-lactamase in Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 1999. 43. pp. 1281-4. doi: 10.1128/AAC.43.5.1281. PMID: 10223953.
  50. Bräu et al.. Genes for gentamicin-(3)-N-acetyltransferases III and IV: I. Nucleotide sequence of the AAC(3)-IV gene and possible involvement of an IS140 element in its expression. Molecular & general genetics : MGG. 1984. 193. pp. 179-87. doi: 10.1007/BF00327434. PMID: 6318050.
  51. Rogers et al.. Insertional activation of cepA leads to high-level beta-lactamase expression in Bacteroides fragilis clinical isolates. Journal of bacteriology. 1994. 176. pp. 4376-84. doi: 10.1128/jb.176.14.4376-4384.1994. PMID: 7517394.
  52. Naas et al.. Genetic structures at the origin of acquisition of the beta-lactamase bla KPC gene. Antimicrobial agents and chemotherapy. 2008. 52. pp. 1257-63. doi: 10.1128/AAC.01451-07. PMID: 18227185.
  53. Dalrymple. Novel rearrangements of IS30 carrying plasmids leading to the reactivation of gene expression. Molecular & general genetics : MGG. 1987. 207. pp. 413-20. doi: 10.1007/BF00331609. PMID: 3039299.
  54. Rudant et al.. Characterization of IS18, an element capable of activating the silent aac(6')-Ij gene of Acinetobacter sp. 13 strain BM2716 by transposition. Antimicrobial agents and chemotherapy. 1998. 42. pp. 2759-61. doi: 10.1128/AAC.42.10.2759. PMID: 9756793.
  55. Zander et al.. Conversion of OXA-66 into OXA-82 in clinical Acinetobacter baumannii isolates and association with altered carbapenem susceptibility. The Journal of antimicrobial chemotherapy. 2013. 68. pp. 308-11. doi: 10.1093/jac/dks382. PMID: 23014718.
  56. Rasmussen et al.. Complete nucleotide sequence of insertion element IS4351 from Bacteroides fragilis. Journal of bacteriology. 1987. 169. pp. 3573-80. doi: 10.1128/jb.169.8.3573-3580.1987. PMID: 3038844.
  57. Maki & Murakami. Formation of potent hybrid promoters of the mutant llm gene by IS256 transposition in methicillin-resistant Staphylococcus aureus. Journal of bacteriology. 1997. 179. pp. 6944-8. doi: 10.1128/jb.179.22.6944-6948.1997. PMID: 9371438.
  58. Couto et al.. Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to s. Journal of bacteriology. 2003. 185. pp. 645-53. doi: 10.1128/JB.185.2.645-653.2003. PMID: 12511511.
  59. Hübner & Hendrickson. A fusion promoter created by a new insertion sequence, IS1490, activates transcription of 2,4,5-trichlorophenoxyacetic acid catabolic genes in Burkholderia cepacia AC1100. Journal of bacteriology. 1997. 179. pp. 2717-23. doi: 10.1128/jb.179.8.2717-2723.1997. PMID: 9098071.
  60. DeShazer et al.. Molecular characterization of catalase from Bordetella pertussis: identification of the katA promoter in an upstream insertion sequence. Molecular microbiology. 1994. 14. pp. 123-30. doi: 10.1111/j.1365-2958.1994.tb01272.x. PMID: 7830550.
  61. Vandecraen et al.. Zinc-Induced Transposition of Insertion Sequence Elements Contributes to Increased Adaptability of Cupriavidus metallidurans. Frontiers in microbiology. 2016. 7. pp. 359. doi: 10.3389/fmicb.2016.00359. PMID: 27047473.
  62. 62.0 62.1 62.2 62.3 Podglajen et al.. Multiple mobile promoter regions for the rare carbapenem resistance gene of Bacteroides fragilis. Journal of bacteriology. 2001. 183. pp. 3531-5. doi: 10.1128/JB.183.11.3531-3535.2001. PMID: 11344163.
  63. 63.0 63.1 63.2 63.3 Kato et al.. New insertion sequence elements in the upstream region of cfiA in imipenem-resistant Bacteroides fragilis strains. Antimicrobial agents and chemotherapy. 2003. 47. pp. 979-85. doi: 10.1128/AAC.47.3.979-985.2003. PMID: 12604530.
  64. López de Felipe et al.. Transcriptional activation of the citrate permease P gene of Lactococcus lactis biovar diacetylactis by an insertion sequence-like element present in plasmid pCIT264. Molecular & general genetics : MGG. 1996. 250. pp. 428-36. doi: 10.1007/BF02174031. PMID: 8602160.
  65. Cascio et al.. A new insertion sequence element containing a cfiA gene in the first imipenem-resistant Bacteroides fragilis strain isolated in Italy. International journal of antimicrobial agents. 2009. 34. pp. 610-1. doi: 10.1016/j.ijantimicag.2009.08.001. PMID: 19744834.
  66. Karim et al.. Plasmid-mediated extended-spectrum beta-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. FEMS microbiology letters. 2001. 201. pp. 237-41. doi: 10.1111/j.1574-6968.2001.tb10762.x. PMID: 11470367.
  67. Cao et al.. Distribution of extended-spectrum beta-lactamases in clinical isolates of Enterobacteriaceae in Vietnam. Antimicrobial agents and chemotherapy. 2002. 46. pp. 3739-43. doi: 10.1128/AAC.46.12.3739-3743.2002. PMID: 12435670.
  68. Lartigue et al.. In vitro analysis of ISEcp1B-mediated mobilization of naturally occurring beta-lactamase gene blaCTX-M of Kluyvera ascorbata. Antimicrobial agents and chemotherapy. 2006. 50. pp. 1282-6. doi: 10.1128/AAC.50.4.1282-1286.2006. PMID: 16569841.
  69. Wachino et al.. Mode of transposition and expression of 16S rRNA methyltransferase gene rmtC accompanied by ISEcp1. Antimicrobial agents and chemotherapy. 2006. 50. pp. 3212-5. doi: 10.1128/AAC.00550-06. PMID: 16940134.
  70. Demuth et al.. Interruption of the Streptococcus gordonii M5 sspA/sspB intergenic region by an insertion sequence related to IS1167 of Streptococcus pneumoniae. Microbiology (Reading, England). 1997. 143 ( Pt 6). pp. 2047-2055. doi: 10.1099/00221287-143-6-2047. PMID: 9202480.
  71. Kallastu et al.. Identification and characterization of IS1411, a new insertion sequence which causes transcriptional activation of the phenol degradation genes in Pseudomonas putida. Journal of bacteriology. 1998. 180. pp. 5306-12. doi: 10.1128/JB.180.20.5306-5312.1998. PMID: 9765560.
  72. Al Safadi et al.. Enhanced expression of lmb gene encoding laminin-binding protein in Streptococcus agalactiae strains harboring IS1548 in scpB-lmb intergenic region. PloS one. 2010. 5. pp. e10794. doi: 10.1371/journal.pone.0010794. PMID: 20520730.

How to Cite?

TnPedia Team. (2025). TnPedia: General Information on Prokaryotic Elements. Zenodo. https://doi.org/10.5281/zenodo.15548171

DOI badge