Difference between revisions of "General Information/Control of transposition activity"

From TnPedia
Jump to navigation Jump to search
Line 1: Line 1:
 
Transposition activity is generally maintained at a low level. An often-cited reason for this is that high activities and the accompanying mutagenic effect of genome rearrangements would be detrimental to the host cell (see <ref><nowiki><pubmed>6320009</pubmed></nowiki></ref>). Endogenous transposase promoters, in contrast to those assembled by the juxtaposition of -10 and -35 hexamers in those IS families whose transposition passes through a double-strand circular transposon intermediate, are generally weak and many are partially located in the terminal IRs. This would enable their autoregulation by Tpase binding.
 
Transposition activity is generally maintained at a low level. An often-cited reason for this is that high activities and the accompanying mutagenic effect of genome rearrangements would be detrimental to the host cell (see <ref><nowiki><pubmed>6320009</pubmed></nowiki></ref>). Endogenous transposase promoters, in contrast to those assembled by the juxtaposition of -10 and -35 hexamers in those IS families whose transposition passes through a double-strand circular transposon intermediate, are generally weak and many are partially located in the terminal IRs. This would enable their autoregulation by Tpase binding.
 +
 +
<br />
  
 
==Bibliography==
 
==Bibliography==
<references/>
+
<references />

Revision as of 12:47, 4 May 2020

Transposition activity is generally maintained at a low level. An often-cited reason for this is that high activities and the accompanying mutagenic effect of genome rearrangements would be detrimental to the host cell (see [1]). Endogenous transposase promoters, in contrast to those assembled by the juxtaposition of -10 and -35 hexamers in those IS families whose transposition passes through a double-strand circular transposon intermediate, are generally weak and many are partially located in the terminal IRs. This would enable their autoregulation by Tpase binding.


Bibliography

  1. <pubmed>6320009</pubmed>