Transposon
Name: In_Tn7
Family: Integron        Group: Class 2
Evidence of Transposition: no
 Host     

Host Organism:Escherichia coli Molecular Source:plasmid R721
Date of Isolation:1972

 Map     



 Sequence     
DNA SequenceLength  3821 
--------10 --------20 --------30 --------40 --------50 --------60 --------70 --------80 --------90 -------100
CTAGTTGCTT AGATACATGA TCTTCAGGCC GTTATCTGTC AGGGCAAGCG AAAATTGGCC ATTTATGACG ACCAATGCCC CGCAGAAGCT CCCATCTTTG 100
CCGCCATAGA CGCCGCGCCC CCCTTTTGGG GTGTAGAACA TCCTTTTGCC AGATGTGGAA AAGAAGTTCG TTGTCCCATT GTTGGCAATG ACGTAGTAGC 200
CGGCGAAAGT GCGAGACCCA TTTGCGCTAT ATATAAGCCT ACGATTTCCG TTGCGACTAT TGTCGTAATT GGATGAACTA TTATCGTAGT TGCTCTCAGA 300
GTTGTCGTAA TTTGATGGAC TATTGTCGTA ATTGCTTATG GAGTTGTCGT AGTTGCTTGG AGAAATGTCG TAGTTGGATG GGGAGTAGTC ATAGGGAAGA 400
CGAGCTTCAT CCACTAAAAC AATTGGCAGG TCAGCAAGTG CCTGCCCCGA TGCCATCGCA AGTACGAGGC TTAGAACCAC CTTCAACAGA TCGCGCATAG 500
TCTTCCCCAG CTCTCTAACG CTTGAGTTAA GCCGCGCCGC GAAGCGGCGT CGGCTTGAAC GAATTGTTAG ACATTATTTG CCGACTACCT TGGTGATCTC 600
GCCTTTCACG TAGTGAACAA ATTCTTCCAA CTGATCTGCG CGCGAGGCCA AGCGATCTTC TTGTCCAAGA TAAGCCTGCC TAGCTTCAAG TATGACGGGC 700
TGATACTGGG CCGGCAGGCG CTCCATTGCC CAGTCGGCAG CGACATCCTT CGGCGCGATT TTGCCGGTTA CTGCGCTGTA CCAAATGCGG GACAACGTAA 800
GCACTACATT TCGCTCATCG CCAGCCCAGT CGGGCGGCGA GTTCCATAGC GTTAAGGTTT CATTTAGCGC CTCAAATAGA TCCTGTTCAG GAACCGGATC 900
AAAGAGTTCC TCCGCCGCTG GACCTACCAA GGCAACGCTA TGTTCTCTTG CTTTTGTCAG CAAGATAGCC AGATCAATGT CGATCGTGGC TGGCTCGAAG 1000
ATACCTGCAA GAATGTCATT GCGCTGCCAT TCTCCAAATT GCAGTTCGCG CTTAGCTGGA TAACGCCACG GAATGATGTC GTCGTGCACA ACAATGGTGA 1100
CTTCTACAGC GCGGAGAATC TCGCTCTCTC CAGGGGAAGC CGAAGTTTCC AAAAGGTCGT TGATCAAAGC TCGCCGCGTT GTTTCATCAA GCCTTACGGT 1200
CACCGTAACC AGCAAATCAA TATCACTGTG TGGCTTCAGG CCGCCATCCA CTGCGGAGCC GTACAAATGT ACGGCCAGCA ACGTCGGTTC GAGATGGCGC 1300
TCGATGACGC CAACTACCTC TGATAGTTGA GTCGATACTT CGGCGATCAC CGCTTCCCTC ATGATGTTTA ACTCCTGAAT TAAGCCGCGC CGCGAAGCGG 1400
TGTCGGCTTG AATGAATTGT TAGGCGTCAT CCTGTGCTCC CGAGAACCAG TACCAGTACA TCGCTGTTTC GTTCGAGACT TGAGGTCTAG TTTTATACGT 1500
GAACAGGTCA ATGCCGCCGA GAGTAAAGCC ACATTTTGCG TACAAATTGC AGGCAGGTAC ATTGTTCGTT TGTGTCTCTA ATCGTATGCC AAGGAGCTGT 1600
CTGCTTAGTG CCCACTTTTT CGCAAATTCG ATGAGACTGT GCGCGACTCC TTTGCCTCGG TGCGTGTGCG ACACAACAAT GTGTTCGATA GAGGCTAGAT 1700
CGTTCCATGT TGAGTTGAGT TCAATCTTCC CGACAAGCTC TTGGTCGATG AATGCGCCAT AGCAAGCAGA GTCTTCATCA GAGTCATCAT CCGAGATGTA 1800
ATCCTTCCGG TAGGGGCTCA CACTTCTGGT AGATAGTTCA AAGCCTTGGT CGGATAGGTG CACATCGAAC ACTTCACGAA CAATGAAATG GTTCTCAGCA 1900
TCCAATGTTT CCGCCACCTG CTCAGGGATC ACCGAAATCT TCATATGACG CCTAACGCCT GGCACAGCGG ATCGCAAACC TGGCGCGGCT TTTGGTACAA 2000
AAGGCGTGAC AGGTTTGCGA ATCCGTTGCT GCCACTTGTT AACCCTTTTG CCAGATTTGG TAACTATAAT TTATGTTAGA GGCGAAGTCT TGGGTAAAAA 2100
CTGGCCTAAA ATTGCTGGGG ATTTCAGGAA AGTAAACATC ACCTTCCGGC TCGATGTCTA TTGTAGATAT ATGTAGTGTA TCTACTTGAT CGATCAGGCT 2200
TTTGTATATC TCCCCACCAC CTGAAACAAT GACATGATCC GTTATTTTCT TTAGGTTGGT TAAAGCATCT TTAATTGATG GAAAGATCAA TACGTTCTCA 2300
TTGTCAGATG TAAAACTTGA ACGTGTTACG ACCGCATACT TTCGGTTGGG TAATGCTCCC ATTGATTCAA AAGTCTTGCG TCCAACCAAC AGCCATTGGT 2400
TATAGGTAAT AGCTTTAAAC AGGAGCTGTT CACCTTTGGC ACTCCATGGA ATATCAGGGC CATTCCCGAT AACTCCATTC TTCGATATAG CTACCATTAG 2500
TGATAGTTTC ACAATTCTTC CTCAGAGGTT AACATTTTAT TAGTAAGCAT GCTCGTTTTG TCACCCGCTG ATGCTTACCG TTAATTAATA TAATCACTTG 2600
TATTAAATAG ACTTTCTTTA AAAATACAAG ACACTCTGTT ATTACAAATC GTGCATGCCG TCTATCCTGC TTGCACGATG CACATTATCT CACCCAAAGA 2700
ACTCATAACA TTTTAATTTA TTTAGCATTA AATTAAAACT CTACCGGTAA ACAAGCATCT CTAGGCGTAA AAAACAGGCA CTTTTTTAAA TCCCAGCTAG 2800
AATAGGCTGT ATAGGCAGAC AGTTGCAAGA CAAGGAGCGT TTTATGTCTA ACAGTCCATT TTTAAATTCT ATACGCACGG ATATGCGACA AAAAGGTTAT 2900
GCGCTGAAAA CTGAAAAAAC TTACCTGCAC TGGATTAAGC GTTTTATTCT GTTTCACAAA AAACGTCATC CTCAGACCAT GGGCAGTGAA GAGGTCAGGC 3000
TGTTTTTATC CAGCTTAGCA AACAGCAGAC ATGTAGCCAT AAACACGCAG AAAATCGCTT TAAATGCCCT AGCTTTTTTG TACAACAGGT TTTTACAACA 3100
GCCGTTGGGC GATATTGATT ATATCCCTGC AAGCAAGCCT AGACGGCTAC CCTCTGTTAT CTCTGCAAAT GAAGTGCAAC GCATTTTGCA GGTTATGGAT 3200
ACTCGCAACC AAGTTATTTT TACGCTGCTG TATGGTGCAG GTTTGCGCAT TAATGAATGC TTGCGTTTGC GGGTTAAAGA TTTTGATTTT GATAATGGCT 3300
GCATCACTGT GCATGACGGT AAGGGTGGGA AAAGCAGAAA CAGCCTACTG CCCACGCGCC TAATCCCAGC AATAAAATAA CTCATTGAGC AAGCGCGGCT 3400
TATTCAGCAA GACGACAACT TACAAGGCGT AGGGCCATCG CTGCCTTTTG CTTTAGATCA CAAATACCCT TCTGCTTATC GACAAGCGGC GTGGATGTTT 3500
GTCTTTCCCT CCAGCACGCT CTGCAACCAC CCGTATAACG GCAAATTATG CCGCCATCAT CTGCATGACT CCGTTGCGCG AAAGGCATTG AAGGCAGCCG 3600
TACAAAAAGC AGGCATCGTT AGCAAGCGTG TCACTTGTCA TACATTTCGT CACTCGTTTG CTACGCATCT ATTACAAGCG GGGCGTGATA TTCGCACTGT 3700
GCAAGAACTC TTAGGGCATA ACGATGTTAA GACCACGCAA ATCTATACGC ATGTGTTGGG TCAGCATTTT GCCGGCACCA CCAGTCCTGC GGATGGACTG 3800
ATGCTACTTA TCAATCAGTA A

 Recombination Sites     

Name Coordinates Gene Sequence
attC qacE2 3'-end 9-14 6 TTAGAT
attC ANT(3'')-IIa core 513-572 60 CTCTAACGCT TGAGTTAAGC CGCGCCGCGA AGCGGCGTCG GCTTGAACGA ATTGTTAGAC
attC Sat-2 core 1366-1425 60 GTTTAACTCC TGAATTAAGC CGCGCCGCGA AGCGGTGTCG GCTTGAATGA ATTGTTAGGC

 ORFs     
ORF Summary
Gene Name Associated TE Coordinates Class Sub Class Orientation
orfX-R721_21 In_Tn7 1-498 Passenger Gene Hypothetical -
ANT(3'')-IIa (ARO:3004089) In_Tn7 574-1362 Passenger Gene Antibiotic Resistance -
SAT-2 (ARO:3002895) In_Tn7 1420-1944 Passenger Gene Antibiotic Resistance -
dfrA1 (ARO:3002854) In_Tn7 2039-2512 Passenger Gene Antibiotic Resistance -
intI2 In_Tn7 2844-3821 Integron Integrase Class 2 +

ORF Details
Gene Name Protein Name Associated TE Gene Length Coordinates Strand
orfX-R721_21 OrfX-R721_21 In_Tn7 498 1-498 -
Class:   Passenger Gene
Sub Class:   Hypothetical
Protein Sequence:  
MRDLLKVVLS LVLAMASGQA LADLPIVLVD EARLPYDYSP SNYDISPSNY DNSISNYDNS PSNYDNSESN YDNSSSNYDN SRNGNRRLIY SANGSRTFAG
YYVIANNGTT NFFSTSGKRM FYTPKGGRGV YGGKDGSFCG ALVVINGQFS LALTDNGLKI MYLSN

Gene Name Protein Name Associated TE Gene Length Coordinates Strand
ANT(3'')-IIa (ARO:3004089) ANT(3'')-IIa In_Tn7 789 574-1362 -
Class:   Passenger Gene
Sub Class:   Antibiotic Resistance
Function:   antibiotic inactivation (ARO:0001004)
Target:   aminoglycoside antibiotic (ARO:0000016)
Sequence Family:  ANT(3'') (ARO:3004275)
Comment:   strict match to reference sequence for ARO:3004089 (bitscore: 522)||Synonym: ANT(9)(3'')
Protein Sequence:  
MREAVIAEVS TQLSEVVGVI ERHLEPTLLA VHLYGSAVDG GLKPHSDIDL LVTVTVRLDE TTRRALINDL LETSASPGES EILRAVEVTI VVHDDIIPWR
YPAKRELQFG EWQRNDILAG IFEPATIDID LAILLTKARE HSVALVGPAA EELFDPVPEQ DLFEALNETL TLWNSPPDWA GDERNVVLTL SRIWYSAVTG
KIAPKDVAAD WAMERLPAQY QPVILEARQA YLGQEDRLAS RADQLEEFVH YVKGEITKVV GK

Gene Name Protein Name Associated TE Gene Length Coordinates Strand
SAT-2 (ARO:3002895) SAT-2 In_Tn7 525 1420-1944 -
Class:   Passenger Gene
Sub Class:   Antibiotic Resistance
Function:   antibiotic inactivation (ARO:0001004)
Target:   nucleoside antibiotic (ARO:3000034)
Sequence Family:  streptothricin acetyltransferase (SAT) (ARO:3000869)
Protein Sequence:  
MKISVIPEQV AETLDAENHF IVREVFDVHL SDQGFELSTR SVSPYRKDYI SDDDSDEDSA CYGAFIDQEL VGKIELNSTW NDLASIEHIV VSHTHRGKGV
AHSLIEFAKK WALSRQLLGI RLETQTNNVP ACNLYAKCGF TLGGIDLFTY KTRPQVSNET AMYWYWFSGA QDDA

Gene Name Protein Name Associated TE Gene Length Coordinates Strand
dfrA1 (ARO:3002854) DfrA1 In_Tn7 474 2039-2512 -
Class:   Passenger Gene
Sub Class:   Antibiotic Resistance
Function:   antibiotic target replacement (ARO:0001002)
Target:   diaminopyrimidine antibiotic (ARO:3000171)
Sequence Family:  trimethoprim resistant dihydrofolate reductase dfr (ARO:3001218)
Comment:   Synonym: dfr1
Protein Sequence:  
MKLSLMVAIS KNGVIGNGPD IPWSAKGEQL LFKAITYNQW LLVGRKTFES MGALPNRKYA VVTRSSFTSD NENVLIFPSI KDALTNLKKI TDHVIVSGGG
EIYKSLIDQV DTLHISTIDI EPEGDVYFPE IPSNFRPVFT QDFASNINYS YQIWQKG

Gene Name Protein Name Associated TE Gene Length Coordinates Strand
intI2 IntI2 In_Tn7 978 2844-3821 +
Class:   Integron Integrase
Sub Class:   Class 2
Transpoase Chemistry:   Tyrosine
Sequence Family:  Class 2 Integron Tyrosine Integrase
Comment:   truncated stop at codon 174
Protein Sequence:  
MSNSPFLNSI RTDMRQKGYA LKTEKTYLHW IKRFILFHKK RHPQTMGSEE VRLFLSSLAN SRHVAINTQK IALNALAFLY NRFLQQPLGD IDYIPASKPR
RLPSVISANE VQRILQVMDT RNQVIFTLLY GAGLRINECL RLRVKDFDFD NGCITVHDGK GGKSRNSLLP TRLIPAIK*L IEQARLIQQD DNLQGVGPSL
PFALDHKYPS AYRQAAWMFV FPSSTLCNHP YNGKLCRHHL HDSVARKALK AAVQKAGIVS KRVTCHTFRH SFATHLLQAG RDIRTVQELL GHNDVKTTQI
YTHVLGQHFA GTTSPADGLM LLINQ

 References     

1.Datta N, Hedges RW. Trimethoprim resistance conferred by W plasmids in Enterobacteriaceae. J Gen Microbiol. 1972 Sep;72(2):349-55. doi: 10.1099/00221287-72-2-349. PubMed ID: 4562309
2.Kim SR, Komano T. Nucleotide sequence of the R721 shufflon. J Bacteriol. 1992 Nov;174(21):7053-8. doi: 10.1128/jb.174.21.7053-7058.1992. PubMed ID: 1400257
3.Fennewald MA, Shapiro JA. Transposition of Tn7 in Pseudomonas aeruginosa and isolation of alk::Tn7 mutations. J Bacteriol. 1979 Jul;139(1):264-9. doi: 10.1128/JB.139.1.264-269.1979. PubMed ID: 110782
4.Gringauz E, Orle KA, Waddell CS, Craig NL. Recognition of Escherichia coli attTn7 by transposon Tn7: lack of specific sequence requirements at the point of Tn7 insertion. J Bacteriol. 1988 Jun;170(6):2832-40. doi: 10.1128/jb.170.6.2832-2840.1988. PubMed ID: 2836374
5.Stellwagen AE, Craig NL. Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition. EMBO J. 1997 Nov 17;16(22):6823-34. doi: 10.1093/emboj/16.22.6823. PubMed ID: 9362496
6.Waddell CS, Craig NL. Tn7 transposition: two transposition pathways directed by five Tn7-encoded genes. Genes Dev. 1988 Feb;2(2):137-49. doi: 10.1101/gad.2.2.137. PubMed ID: 2834269
7.Skelding Z, Queen-Baker J, Craig NL. Alternative interactions between the Tn7 transposase and the Tn7 target DNA binding protein regulate target immunity and transposition. EMBO J. 2003 Nov 3;22(21):5904-17. doi: 10.1093/emboj/cdg551. PubMed ID: 14592987
8.McKown RL, Waddell CS, Arciszewska LK, Craig NL. Identification of a transposon Tn7-dependent DNA-binding activity that recognizes the ends of Tn7. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7807-11. doi: 10.1073/pnas.84.22.7807. PubMed ID: 2825163
9.Bainton RJ, Kubo KM, Feng JN, Craig NL. Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell. 1993 Mar 26;72(6):931-43. doi: 10.1016/0092-8674(93)90581-a. PubMed ID: 8384534
10.McKown RL, Orle KA, Chen T, Craig NL. Sequence requirements of Escherichia coli attTn7, a specific site of transposon Tn7 insertion. J Bacteriol. 1988 Jan;170(1):352-8. doi: 10.1128/jb.170.1.352-358.1988. PubMed ID: 2826397
11.Arciszewska LK, Drake D, Craig NL. Transposon Tn7. cis-Acting sequences in transposition and transposition immunity. J Mol Biol. 1989 May 5;207(1):35-52. doi: 10.1016/0022-2836(89)90439-7. PubMed ID: 2544738
12.Hansson K, Sundstrom L, Pelletier A, Roy PH. IntI2 integron integrase in Tn7. J Bacteriol. 2002 Mar;184(6):1712-21. doi: 10.1128/jb.184.6.1712-1721.2002. PubMed ID: 11872723
13.Choi KY, Spencer JM, Craig NL. The Tn7 transposition regulator TnsC interacts with the transposase subunit TnsB and target selector TnsD. Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):E2858-65. doi: 10.1073/pnas.1409869111. Epub 2014 Jun 30. PubMed ID: 24982178
14.Wolkow CA, DeBoy RT, Craig NL. Conjugating plasmids are preferred targets for Tn7. Genes Dev. 1996 Sep 1;10(17):2145-57. doi: 10.1101/gad.10.17.2145. PubMed ID: 8804309
15.Rao JE, Craig NL. Selective recognition of pyrimidine motif triplexes by a protein encoded by the bacterial transposon Tn7. J Mol Biol. 2001 Apr 13;307(5):1161-70. doi: 10.1006/jmbi.2001.4553. PubMed ID: 11292332
16.Craig NL. Tn7: a target site-specific transposon. Mol Microbiol. 1991 Nov;5(11):2569-73. doi: 10.1111/j.1365-2958.1991.tb01964.x. PubMed ID: 1664019
17.Chakrabarti A, Desai P, Wickstrom E. Transposon Tn7 protein TnsD binding to Escherichia coli attTn7 DNA and its eukaryotic orthologs. Biochemistry. 2004 Mar 16;43(10):2941-6. doi: 10.1021/bi035535u. PubMed ID: 15005630
18.DeBoy RT, Craig NL. Tn7 transposition as a probe of cis interactions between widely separated (190 kilobases apart) DNA sites in the Escherichia coli chromosome. J Bacteriol. 1996 Nov;178(21):6184-91. doi: 10.1128/jb.178.21.6184-6191.1996. PubMed ID: 8892817
19.Sarnovsky RJ, May EW, Craig NL. The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products. EMBO J. 1996 Nov 15;15(22):6348-61. PubMed ID: 8947057
20.Peters JE. Tn7. Microbiol Spectr. 2014 Oct;2(5). doi: 10.1128/microbiolspec.MDNA3-0010-2014. PubMed ID: 26104363
21.Kuduvalli PN, Rao JE, Craig NL. Target DNA structure plays a critical role in Tn7 transposition. EMBO J. 2001 Feb 15;20(4):924-32. doi: 10.1093/emboj/20.4.924. PubMed ID: 11179236
22.DeBoy RT, Craig NL. Target site selection by Tn7: attTn7 transcription and target activity. J Bacteriol. 2000 Jun;182(11):3310-3. doi: 10.1128/jb.182.11.3310-3313.2000. PubMed ID: 10809719
23.Sharpe PL, Craig NL. Host proteins can stimulate Tn7 transposition: a novel role for the ribosomal protein L29 and the acyl carrier protein. EMBO J. 1998 Oct 1;17(19):5822-31. doi: 10.1093/emboj/17.19.5822. PubMed ID: 9755182
24.Sarnovsky RJ, May EW, Craig NL. The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products. EMBO J. 1996 Nov 15;15(22):6348-61. PubMed ID: 8947057
25.Shi Q, Parks AR, Potter BD, Safir IJ, Luo Y, Forster BM, Peters JE. DNA damage differentially activates regional chromosomal loci for Tn7 transposition in Escherichia coli. Genetics. 2008 Jul;179(3):1237-50. doi: 10.1534/genetics.108.088161. Epub 2008 Jun 18. PubMed ID: 18562643
26.Parks AR, Peters JE. Tn7 elements: engendering diversity from chromosomes to episomes. Plasmid. 2009 Jan;61(1):1-14. doi: 10.1016/j.plasmid.2008.09.008. Epub 2008 Nov 1. PubMed ID: 18951916
27.Gamas P, Craig NL. Purification and characterization of TnsC, a Tn7 transposition protein that binds ATP and DNA. Nucleic Acids Res. 1992 May 25;20(10):2525-32. doi: 10.1093/nar/20.10.2525. PubMed ID: 1317955
28.Arciszewska LK, McKown RL, Craig NL. Purification of TnsB, a transposition protein that binds to the ends of Tn7. J Biol Chem. 1991 Nov 15;266(32):21736-44. PubMed ID: 1657979
29.Gay NJ, Tybulewicz VL, Walker JE. Insertion of transposon Tn7 into the Escherichia coli glmS transcriptional terminator. Biochem J. 1986 Feb 15;234(1):111-7. doi: 10.1042/bj2340111. PubMed ID: 3010949
30.Holder JW, Craig NL. Architecture of the Tn7 posttransposition complex: an elaborate nucleoprotein structure. J Mol Biol. 2010 Aug 13;401(2):167-81. doi: 10.1016/j.jmb.2010.06.003. Epub 2010 Jun 9. PubMed ID: 20538004
31.Peters JE, Craig NL. Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates. Mol Cell. 2000 Sep;6(3):573-82. doi: 10.1016/s1097-2765(00)00056-3. PubMed ID: 11030337
32.Stellwagen AE, Craig NL. Gain-of-function mutations in TnsC, an ATP-dependent transposition protein that activates the bacterial transposon Tn7. Genetics. 1997 Mar;145(3):573-85. doi: 10.1093/genetics/145.3.573. PubMed ID: 9055068
33.Skelding Z, Sarnovsky R, Craig NL. Formation of a nucleoprotein complex containing Tn7 and its target DNA regulates transposition initiation. EMBO J. 2002 Jul 1;21(13):3494-504. doi: 10.1093/emboj/cdf347. PubMed ID: 12093750
34.May EW, Craig NL. Switching from cut-and-paste to replicative Tn7 transposition. Science. 1996 Apr 19;272(5260):401-4. doi: 10.1126/science.272.5260.401. PubMed ID: 8602527
35.Lu F, Craig NL. Isolation and characterization of Tn7 transposase gain-of-function mutants: a model for transposase activation. EMBO J. 2000 Jul 3;19(13):3446-57. doi: 10.1093/emboj/19.13.3446. PubMed ID: 10880457
36.Stellwagen AE, Craig NL. Analysis of gain-of-function mutants of an ATP-dependent regulator of Tn7 transposition. J Mol Biol. 2001 Jan 19;305(3):633-42. doi: 10.1006/jmbi.2000.4317. PubMed ID: 11152618
37.Gary PA, Biery MC, Bainton RJ, Craig NL. Multiple DNA processing reactions underlie Tn7 transposition. J Mol Biol. 1996 Mar 29;257(2):301-16. PubMed ID: 8609625
38.Arciszewska LK, Craig NL. Interaction of the Tn7-encoded transposition protein TnsB with the ends of the transposon. Nucleic Acids Res. 1991 Sep 25;19(18):5021-9. doi: 10.1093/nar/19.18.5021. PubMed ID: 1656385
39.Arciszewska LK, Craig NL. Interaction of the Tn7-encoded transposition protein TnsB with the ends of the transposon. Nucleic Acids Res. 1991 Sep 25;19(18):5021-9. doi: 10.1093/nar/19.18.5021. PubMed ID: 1656385
40.Peters JE, Craig NL. Tn7 recognizes transposition target structures associated with DNA replication using the DNA-binding protein TnsE. Genes Dev. 2001 Mar 15;15(6):737-47. doi: 10.1101/gad.870201. PubMed ID: 11274058
41.Ronning DR, Li Y, Perez ZN, Ross PD, Hickman AB, Craig NL, Dyda F. The carboxy-terminal portion of TnsC activates the Tn7 transposase through a specific interaction with TnsA. EMBO J. 2004 Aug 4;23(15):2972-81. doi: 10.1038/sj.emboj.7600311. Epub 2004 Jul 15. PubMed ID: 15257292
42.Kubo KM, Craig NL. Bacterial transposon Tn7 utilizes two different classes of target sites. J Bacteriol. 1990 May;172(5):2774-8. doi: 10.1128/jb.172.5.2774-2778.1990. PubMed ID: 2158980
43.Peters JE, Craig NL. Tn7: smarter than we thought. Nat Rev Mol Cell Biol. 2001 Nov;2(11):806-14. doi: 10.1038/35099006. PubMed ID: 11715047
44.Shi Q, Straus MR, Caron JJ, Wang H, Chung YS, Guarné A, Peters JE. Conformational toggling controls target site choice for the heteromeric transposase element Tn7. Nucleic Acids Res. 2015 Dec 15;43(22):10734-45. doi: 10.1093/nar/gkv913. Epub 2015 Sep 17. PubMed ID: 26384427